

A-LEVEL Mathematics

MS04 – Statistics 4 Mark scheme

6360 June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS04

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- GN3 In general, a correct answer (to accuracy required) without units scores full marks
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3})
- **GN8** Where a candidate's response to a part of a question is simply to label the part (eg (d)(i)) with nothing else (ie no attempt at a solution), then this is still treated as a response and marked as 0 rather than NR. Also, deleted work, if not replaced, should be marked and not treated as NR.

0	Solution	Mark	Total	Comment
1	Assumption: differences are (approximately) normally distributed	B1	1000	OE; must mention 'differences'
	d: 3.7 -2.8 -5.8 -3.0 -3.5 4.2 or d: -3.7 2.8 5.8 3.0 3.5 -4.2	M1		
	$\overline{d} = \pm 1.2$ and $s_{n-1}^2 = 17.08$ or $s_{n-1} = 4.13$ or $s_n^2 = 14.24$ or $s_n = 3.77$	A1		CAO/AWRT (17.08040 & 4.13328) (14.23667 & 3.77315)
	CV: 90% \Rightarrow $t_5(0.95) = 2.01$ to 2.02	B1		AWFW (2.015048)
	CI: $(\pm 1.2) \pm (2.015) \times \left(\frac{4.13}{\sqrt{6}}\right)$	M1		Must use $\left(\frac{4.13}{\sqrt{6}}\right)$ or $\left(\frac{3.77}{\sqrt{5}}\right)$ OE
	Thus or $\frac{-1.2 \pm 3.4 \text{ or } +1.2 \pm 3.4}{(-4.6, 2.2) \text{ or } (-2.2, 4.6)}$	A1		AWRT
NI - 4 -				L
Note	1 CI based on two independent samples \Rightarrow B1 M0 A0 B0	MU AU (ma	x of I mark)
		Total	6	

Q	Solution	Mark	Total	Comment
2 (a)	$\sum (x - \overline{x})^2 = 762 s_{n-1}^2 = 50.8 s_{n-1} = 7.12741$ $s_n^2 = 47.625 s_n = 6.90109$	B1		CAO/AWRT; any one Ignore notation
	$H_0: \sigma = 10$ $H_1: \sigma \neq 10$	B1 B1		OE OE
	DF $v = \underline{15}$	B1		CAO; can be implied
	CVs $\chi^2(0.95) = 6.26$ and 27.5	B1		AWRT; both (6.262 & 27.488)
	$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{762}{100} = \frac{7.6 \text{ to } 7.65}{100}$	M1 A1		AWFW (7.62) (<i>p</i> -value = 0.123774)
	There is no evidence , at 5% level, of a change from 10 in the standard deviation	AF1	8	OE; F on χ^2 -value and both χ^2 -CVs or on correct use of <i>p</i> -value
(b)	No significant evidence of change in σ or standard deviation is known/same so use a <i>z</i> -test	Bdep1 B1		OE: dep on "Accept H_0 " in (a)
	or			
	in σ from 10 (eg 7.12 < 10) so use a <i>t</i> -test	(Bdep1) (B1)	2	OE; dep on $s_{n-1} < 10$ or $s_n < 10$
			2	
		Total	10	

Q	Solution	Mark	Total	Comment
3 (a)(i)	If $\frac{1}{\lambda}$ is mean, then $\underline{\mathbf{f}(x)} = \lambda e^{-\lambda x}$	M1		Correct pdf identified or used (Given in blue booklet)
	so $F(m) = \int_{0}^{m} \lambda e^{-\lambda x} dx = 0.5 \implies$	ml		Correct expression equated to 0.5 but ignore limits
	$\begin{bmatrix} -e^{-\lambda x} \end{bmatrix}_0^m = 0.5 \implies$ 1-e^{-\lambda m} = 0.5 or $e^{-\lambda m} = 0.5 \implies$	A1		Correct integration and correct substitution of correct limits
	$\underline{m = \frac{-\ln 0.5}{\lambda}} \text{or} \underline{m = \frac{1}{\lambda} \ln 2} \text{or} \underline{m = \frac{0.693}{\lambda}}$	A1	4	OE CAO/AWRT (Use of $\mu = \lambda \implies M1 m1 max$)
(ii)	$P(m < X < \mu) = P\left(X < \frac{1}{\lambda}\right) - 0.5 \Rightarrow$	M1		Use of $\left(\frac{1}{\lambda}\right)$ & (0.5 OE)
	$\left[-e^{-\lambda x}\right]_{0}^{\frac{1}{\lambda}}$ or $F\left(\frac{1}{\lambda}\right) = 1 - e^{-1} - 0.5 \implies$	A1		Correct integration and correct substitution of correct limits or correct use of $F(\lambda^{-1})$
	$\underline{0.5 - e^{-1}} \text{or} \underline{\frac{e-2}{2e}} \text{or} \underline{0.132}$	A1	3	OE CAO/AWRT (0.132121)
(b) (i)	$E(Y) = \frac{1}{0.0125} = 80$			(From blue booklet)
	$P(Y < 2E(Y)) = \left[-e^{-0.0125y} \right]_{0}^{160} =$	M1		Use of F(160); OE
	$\underline{1-e^{-2}}$ or $\underline{e^2-1}_{e^2}$ or $\underline{0.865}_{e^2}$	A1	2	OE CAO/AWRT (0.864665)
(ii)	No calls during 2019 $\Rightarrow Y > 365$	B1		САО
	$P(Y > 365) = \left[-e^{-0.0125y} \right]_{365}^{\infty} =$	M1		Use of 1 – F(365); OE
	<u>e^{-4.5625}</u> or <u>0.010 to 0.011</u>	A1	3	CAO/AWFW (0.0104359)
		Total	12	

0	Solution									Total	Comment
4 (a)	Mean = $\frac{300}{125}$ = <u>2.4</u>								B1	1	CAO ratio AG
(b)	H_0 : claim justified or Poisson H_1 : claim not justified or not Poisson								B1		OE; at least H_0
	п	р	E	0	$(O-E)^2/E$	E	0	$(O-E)^2/E$	M1		Use of Po(2.4) to obtain probabilities
	0	0.09071	11.34	14	0.62408	11.34	14	0.62408	A 1		
	1	0.21772	27.22	23	0.65292	27.22	23	0.65292	AI		$\geq 5 p$ (3dp) or E (1dp); can be implied
	2	0.26127	32.66	35	0.16788	32.66	35	0.16788			Implied
	3	0.20901	26.13	23	0.37420	26.13	23	0.37420	M1		$125 \times p$
	4	0.12541	15.68	16	0.00669	15.68	16	0.00669	MI		
	5	0.06020	7.52	10	0.81441	11.98	14	0.33930	IVI I		Combining outcomes
	6	0.02408	3.01	4	0.32576						
	≥7 Total	1	1.45 125	125	4.415	125	125	2.165	M1		Use of $(O - E)^2 / E$ (OE)
	$\chi^2(\text{calc}) = 2.0 \text{ to } 2.3$) to 2.3	A1	(6)	AWFW (2.16508)
	DF $v = 6 - 1 - 1 = 4$								B1		CAO
	CV $\chi^2(0.95) = = 9.48 \text{ to } 9.49$							<u>9.49</u>	B1		AWFW (9.48773) (<i>p</i> -value = 0.70 to 0.71 AWFW)
	No evidence , at 5% level, to suggest that claim is incorrect							claim	Adep1	10	Dep on correct χ^2 -value and correct χ^2 -CV or on correct use of <i>p</i> -value
										10	
									Total	11	

Q	Solution	Mark	Total	Comment
5 (a)	$H_0: \sigma_R^2 = \sigma_U^2$ $H_1: \sigma_R^2 \neq \sigma_U^2$	B1		Both; allow alternative subscripts
	DF $v_1 = v_R = \underline{10}$ $v_2 = v_U = \underline{20}$	B1		CAO; both (allow switched)
	CV (5%, 2-tailed) $\frac{F = 2.77 \text{ to } 2.78}{F = 0.36}$	B1		AWFW(2.77367)AWRT(0.360533)
	F(calc) = 51.40/32.40	M1		Ratio of given sample variances
	= <u>1.58 to 1.59 or 0.63</u>	A1		AWFW/AWRT (1.58642 or 0.63035) (<i>p</i> -value = 0.364 AWRT)
	<u>1.59 < 2.77</u> or <u>0.63 > 0.36</u> \Rightarrow Accept H ₀	Adep1	6	AG OE; dep on previous 5 marks
(b)(i)	$s_{\rm p}^2 = \frac{10 \times 51.4 + 20 \times 32.4}{11 + 21 - 2} = \frac{1162}{30} \implies$	M1		Attempt at pooling of given sample variances
	<u>38.73 or $(\sqrt{38.73} = 6.22)$</u>	A1		AWRT; either (38.73333 or 6.22361)
	$v = 30$ so $95\% \implies t = 2.04$	B1		AWRT (2.042272)
	CI for $\mu_{\rm R} - \mu_{\rm U}$ is (36-32) ± 2.042 $\sqrt{38.73\left(\frac{1}{11} + \frac{1}{21}\right)}$	M2 (-1 ee)		OE
	or (-0.7, 8.7)	Adep1	6	CAO Dep on M2 (4 ± 4.73070) CAO
(ii)	Since 0 ε CI	Bdep1		OE; dep on 0 ϵ CI but not on CI
	there is no significant evidence of a difference in mean durations of walks	Bdep1	2	Dep on Bdep1; must mention 'mean'
		Total	14	

Q	Solution	Mark	Total	Comment
6(a)				
(i)	$E(X) = \sum_{x=1}^{\infty} x p (1-p)^{x-1}$	M1		Ignore limits; can be implied
	$= p(1+2(1-p)+3(1-p)^{2}+4(1-p)^{3}+)$	A1		Common factor & series
	$= p \times \frac{1}{(1-(1-p))^2} = \frac{1}{p}$	A1		AG Convincing fully correct proof
			3	
Note	1 $E(X) - qE(X) = p + pq + pq^2 + pq^3 + \dots = 1 \implies E(X) =$	1/p		L
(ii)				
	$Var(X) = E(X^{2}) - (E(X))^{2}$ = E(X(X-1)) + E(X) - (E(X))^{2} =	M1		Other methods are possible
				$\mathrm{E}(X^{2}) = (2-p)/p^{2}$
	$\frac{2(1-p)}{p^2} + \frac{1}{p} - \frac{1}{p^2} = \frac{2-2p+p-1}{p^2} = \frac{1-p}{p^2}$	A1		Clear fully correct proof
			2	
(iii)	$\sum_{x=n}^{\infty} P(X = x) = \sum_{x=n}^{\infty} p(1-p)^{x-1} =$			Or = $P((n-1)$ successive failures) = q^{n-1} \Rightarrow M1 A1
	$p(1-p)^{n-1}(1+(1-p)+(1-p)^2+(1-p)^3+)$	M1		Common factor & series
	$= p(1-p)^{n-1} \times \frac{1}{1-(1-p)} = \underline{(1-p)^{n-1}}$	A1	2	AG Convincing fully correct proof
Note	$1 \sum_{x=n}^{\infty} \mathbf{P}(X=x) = \sum_{x=1}^{\infty} pq^{x-1} - \sum_{x=1}^{n-1} pq^{x-1} = 1 - p(1-q^{n-1})/p$	$= q^{n-1} =$	$(1-p)^{n-1}$	using $S_n = a(1-r^n)/(1-r)$ }
(b)(i)	$Y \sim \text{Geo}(1/37) \Rightarrow$ $\mathrm{E}(Y) = \underline{37}$	B1		CAO
	$\operatorname{Var}(Y) = \frac{1 - \frac{1}{37}}{\left(\frac{1}{27}\right)^2}$ or $37^2 - 37 = 1332$	B 1		CAO
			2	
(ii)	$P(Y \ge n) < 0.01 \implies \left(1 - \frac{1}{37}\right)^{n-1} < 0.01$	M1		Use of $(1-p)^{n-1} < 0.01$
	so			M1 m1 can be scored for use of n and/or $1/36$
	$(n-1)\ln\left(\frac{36}{37}\right) < \ln(0.01) \Rightarrow$	m1		$(n-1)\log\left(\frac{36}{37}\right) < \log(0.01)$
	$n-1 > \frac{-4.605170}{-0.027400} = 168.07$			$n-1 > \frac{-2}{-0.011899}$ or $\frac{\ln(100)}{\ln(37/36)}$
	Minimum $n = \underline{170}$	A1	3	CAO; use of 1/36 gives 165
		Tatal	10	
		rotal	14	

0	Solution	Mark	Total	Comment
7				
(a)	$X \sim \operatorname{Po}(\lambda) \implies \operatorname{E}(X) = \underline{\lambda}$			
	and			
	$Y \sim \text{Po}(4\lambda) \implies \text{E}(Y) = \underline{4\lambda}$			
	$E(S) = \underline{n\lambda}$ and $E(T) = \underline{8n\lambda}$	B1		Both
	$E(U) = \frac{1}{n\lambda + 8n\lambda} (= \lambda)$	B1		Correct expression
	9n	51		
		E.I.		
	$E(V) = \frac{1}{12n} (4n\lambda + 8n\lambda) (= \underline{\lambda})$	BI		Correct expression
			3	
(b)				
(1)	$\operatorname{Var}(S) = \underline{n\lambda}$ and $\operatorname{Var}(T) = \underline{8n\lambda}$	B1		Both; can be implied below
	1 2			
	$\operatorname{Var}(U) = \frac{1}{\Omega^2 n^2} (n\lambda + 8n\lambda) = \frac{\lambda}{\Omega n}$			≥ 1 correct use of 'Var' operator
	9 n <u>9n</u>			CAO
	1 (λ^2 λ λ			
	$\operatorname{Var}(V) = \frac{12^2 n^2}{12^2 n^2} (4^2 n\lambda + 8n\lambda) = \frac{144n}{144n} = \frac{1}{6n}$	A1		CAO
			4	
(ii)				
	$\operatorname{Var}(U)$ and $\operatorname{Var}(V) \to 0$ as $n \to \infty$	BF1		F on (b)(i)
			1	
(C)	Efficiency of U relative to V is			
	$1/Var(U) = 9n/\lambda$	M1		
	$\frac{1}{Var(V)} - \frac{1}{6n/\lambda}$	IVI I		
	= 3/2 or 1.5	A1	•	CAO
SC	1 Efficiency = $2/3$ or 0.67(AWRT) \rightarrow B1	L	2	L
50	$= \text{Enclosely} - \text{Ers or oron (ATTAC)} \rightarrow \text{D1}$			
		Total	10	